
Please cite this article in press as: Park J, Moghaddam B. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience (2016),

http://dx.doi.org/10.1016/j.neuroscience.2016.06.013
Neuroscience xxx (2016) xxx–xxx
REVIEW

IMPACT OF ANXIETY ON PREFRONTAL CORTEX ENCODING
OF COGNITIVE FLEXIBILITY
JUNCHOL PARK AND BITA MOGHADDAM *

Department of Neuroscience, University of Pittsburgh,

Pittsburgh, PA, USA
Abstract—Anxiety often is studied as a stand-alone con-

struct in laboratory models. But in the context of coping

with real-life anxiety, its negative impacts extend beyond

aversive feelings and involve disruptions in ongoing

goal-directed behaviors and cognitive functioning. Critical

examples of cognitive constructs affected by anxiety are

cognitive flexibility and decision making. In particular, anxi-

ety impedes the ability to shift flexibly between strategies in

response to changes in task demands, as well as the ability

to maintain a strategy in the presence of distractors. The

brain region most critically involved in behavioral flexibility

is the prefrontal cortex (PFC), but little is known about how

anxiety impacts PFC encoding of internal and external

events that are critical for flexible behavior. Here we review

animal and human neurophysiological and neuroimaging

studies implicating PFC neural processing in anxiety-

induced deficits in cognitive flexibility. We then suggest

experimental and analytical approaches for future studies

to gain a better mechanistic understanding of impaired cog-

nitive inflexibility in anxiety and related disorders.

This article is part of a Special Issue entitled: Cognitive

Flexibility � 2016 IBRO. Published by Elsevier Ltd. All rights
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INTRODUCTION

Anxiety can be an adaptive reaction to stressful and

unpredictable life events. But depending on its duration

and intensity, anxiety produces cognitive impairments

including deficits in cognitive flexibility and decision

making. Clinical studies have long established that

individuals with anxiety disorders are impaired at shifting

from a previously effective strategy to a currently valid

strategy, and are distracted by task-irrelevant stimuli

(Shin et al., 2001; Eysenck et al., 2007; Ansari et al.,

2008; Bishop, 2009; Lyche et al., 2010). Similarly, animal

behavioral studies have reported that increased anxiety,

at least when caused by acute or chronic stress, impairs

performance in tasks that assess behavioral flexibility

such as extra-dimensional set-shifting (Bondi et al.,

2008; Butts et al., 2013; George et al., 2015).

The brain region most critically involved in behavioral

flexibility is the prefrontal cortex (PFC). A comprehensive

literature has demonstrated that the functional integrity of

PFC is essential for cognitive flexibility in rodents

(Ragozzino et al., 2003; Stefani et al., 2003; Rich and

Shapiro, 2009; Stefani and Moghaddam, 2010), primates

(Dias et al., 1996; White and Wise, 1999; Wallis et al.,

2001; Nakahara et al., 2002) and humans (Konishi

et al., 1998; Nakahara et al., 2002; Nagano-Saito et al.,

2008).

Here we posit that deficits in cognitive flexibility

caused by anxiety may be attributed to neuronal

processing anomalies in the PFC. We begin by

reviewing recent neurophysiology and neuroimaging

studies describing the PFC representation of cognitive

flexibility. Then we discuss the neural substrates of

anxiety-related disruptions in PFC and suggest future

approaches for a better mechanistic understanding of

how anxiety impacts cognitive flexibility.

http://dx.doi.org/10.1016/j.neuroscience.2016.06.013
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Fig. 1. Tasks measuring cognitive flexibility in humans and rodents.

(A) Example trials in the WCST. The top card is the test card. The

bottom three cards are the reference cards. During the matching

period, the subject selects the reference card that matches the test

card based on the currently valid sorting rule, e.g., matching based on

the color or shape. Feedback is provided after each selection. An

extra-dimensional set-shift occurs to another rule in a distinct

perceptual dimension unbeknown to the subject, who should respond

to the shift according to task feedback. (B) A rodent version of a set-

shifting task in the operant chamber. In this task, rats learn to guide

their instrumental behavior based on two rules in distinct perceptual

dimensions, and shift between them based on the task feedback

(reward delivery or omission). In the ‘‘light rule,” a nose poke (or a

lever press) to the illuminated port is correct, whereas in the ‘‘side

rule,” a nose poke to the valid location (e.g. left port) is a correct

response regardless of the illumination. The gray arrows indicate the

current valid side (invisible to rats). (C) A rodent set-shifting task in

the plus maze. In the place rule, rats are required to enter one goal

arm (east or west) from both starting arms (north and south). In the

response rule, one body turn response (right or left) should be made

from either starting arm. Gray arrows indicate correct trajectories in

either rule.
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Fig. 2. Set-shifting task performance is impaired by intracranial

microinjection of the NMDA receptor antagonist MK801 in mPFC. (A)

The extra-dimensional set-shifting task used for this experiment. In

each session, rats performed the operant task based on two

alternating rules in distinct perceptual dimensions. Three extra-

dimensional rule-shifts (i.e. total four sets with two light- and two side-

rule sets interleaved in a pseudo-randomized order) had to be made

to complete a session. (B) Rats underwent a total of five sessions

with injections made only on the 4th session, indicated with an arrow.

MK801 significantly increased the number of total trials to complete

the task, indicating impaired task performance. (C) The most

pronounced drug effect was increased number of perseverative

errors, scored when rats produced an error by making a choice based

on the previously effective rule. This result indicates that the blockade

of glutamatergic neurotransmission mediated by NMDA receptors in

PFC leads to cognitive inflexibility. (B and C) were adapted from

Darrah et al. (2008).

2 J. Park, B. Moghaddam /Neuroscience xxx (2016) xxx–xxx
PFC INVOLVEMENT IN COGNITIVE FLEXIBILITY

Behavioral and lesion studies

Behavioral paradigms for cognitive flexibility test the

ability to guide goal-directed actions based on two or

more discriminative rules, and to shift from one rule to

another on the basis of the feedback (i.e. response

outcome). Among many versions of these tasks, the

Wisconsin Card Sorting Task (WCST; Fig. 1A) has been

used most commonly for rule-based flexible control of

behavior in humans (Nyhus and Barcelo, 2009). In the

WCST, participants are required to match the test cards

with a sample card according to one of multiple possible

rules (Fig. 1A; e.g. color rule, shape rule), with changes

in the matching rule occurring without subjects’
Please cite this article in press as: Park J, Moghaddam B. Impact of anxiety on
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knowledge, thus requiring flexible adjustment of the sort-

ing strategy based on the feedback. Studies have shown

that, when performing the WCST, individuals with ventro-

medial PFC lesion fail to shift to a response strategy that

is more advantageous in the long run (Bechara et al.,

1996, 2000). This is consistent with earlier work demon-

strating that human subjects with frontal lobe injury show

marked deficits in shifting from one mode of solution to

another on a sorting task (Milner, 1963).

Animal studies have successfully used different

versions of the WCST (Fig. 1B, C) to investigate neural

substrates of flexible rule-based decision making in

rodents and primates. In these tasks, behavior is guided

by the currently valid rule among two or more other

rules on distinct perceptual dimensions. Rule shifting

can occur between different perceptual dimensions

(extra-dimensional shifting) or within a dimension (intra-

dimensional shifting or reversal). Lesion or
prefrontal cortex encoding of cognitive flexibility. Neuroscience (2016),
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pharmacological manipulations of the rat medial PFC

(mPFC) result in markedly impaired performance in

these and other set-shifting tasks that assess behavioral

flexibility (Birrell and Brown, 2000; Ragozzino et al.,

2003; Stefani et al., 2003; Bissonette et al., 2008;

Darrah et al., 2008; Floresco et al., 2008; Stefani and

Moghaddam, 2010) (Fig. 2). This is similar to perfor-

mance deficits observed after dorsolateral PFC lesion in

non-human primates (Dias et al., 1996, 1997) and in

humans with PFC damage (Anderson et al., 1999).
Human neuroimaging studies

Cognitive flexibility involves multiple dynamic processes

that monitor ongoing actions and action–outcome

relationships, and then adjusts future actions based on

outcome. This process can be subdivided into various

constructs such as representations of the rule,

performance errors, the conflict among different

response tendencies, and the risk/uncertainty contingent

on the action. Human and primate studies using

functional magnetic resonance imaging (fMRI) have

shown that different but overlapping subregions of the

PFC are activated in correlation with these constructs in

multiple tasks (Carter et al., 1998; Kerns et al., 2004;

O’Doherty, 2004; Egner and Hirsch, 2005; Clark et al.,

2008). For example, fMRI studies have shown transient

activation of PFC during rule shifting, (Konishi et al.,

1998; Nakahara et al., 2002) and retrieval and mainte-

nance of abstract rules for decision making (Bunge

et al., 2003).
Animal electrophysiological studies: individual
neuronal coding

While human neuroimaging data have informed us about

the general involvement of PFC subregions in cognitive-

flexibility tasks, invasive electrophysiological recordings

in laboratory animals have described the dynamic

nature of neuronal encoding during these tasks. For

example, studies in primates have revealed that PFC

single neuron firing rates during different task states

(baseline, cue, delay and response periods) vary as a

function of the current task rule (Hoshi et al., 1998;

White and Wise, 1999; Asaad et al., 2000; Fuster et al.,

2000).

Electrophysiological studies in rodents have

demonstrated that PFC subregions – including prelimbic

PFC (PL), infralimbic PFC (IL), and orbitofrontal cortex

(OFC) – are differentially involved in extra-dimensional

set-shifting tasks. In an elegant study, Rich and Shapiro

recorded from single neurons in rats navigating a plus

maze with two alternating response strategies in

egocentric path and spatial location (Fig. 1C; e.g. ‘‘go

left” or ‘‘go west”) dimensions (Rich and Shapiro, 2009).

Subpopulations of PL and IL neurons encoded the strat-

egy shift, even when neuronal activity during the two

strategies was compared between trials with seemingly

identical navigation. The PL encoding of a strategy shift

temporally preceded both the behavioral shift and IL

encoding, suggesting that dorsal rather than ventral

mPFC neurons drive the behavioral shift. Neurons in the
Please cite this article in press as: Park J, Moghaddam B. Impact of anxiety on
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OFC have been suggested to play a dissociable role that

is more specialized for signaling outcome expectancy

(Schoenbaum et al., 2009). This view is supported by

behavioral studies showing the role of OFC in representa-

tion of outcome value and expectancy (Dias et al., 1996,

1997; McAlonan and Brown, 2003; Rudebeck et al., 2006;

Bissonette et al., 2008; Burke et al., 2009). Neurophysio-

logical studies suggest that OFC neurons signal outcome

expectancy as well as reversal in cue-outcome associa-

tion (Roesch and Olson, 2004; Morrison and Salzman,

2009; Bissonette et al., 2015; Simon et al., 2015).

Animal electrophysiological studies: neural
population coding

Recent neurophysiological studies have delved into PFC

population-level codes that may underlie rule-based

flexible control of behavior. Investigating the coordinated

activity of neural populations is particularly important

when examining the neural basis of rule-based behavior

because such tasks require encoding of multiple task

features to which individual PFC neurons are

dynamically tuned. These dynamic properties have been

illustrated in recent studies that have investigated the

population-level activity of PFC and other high-order

cortical structures during flexible decision making

(Karlsson et al., 2012; Mante et al., 2013; Rigotti et al.,

2013; Ma et al., 2014; Raposo et al., 2014). These reports

show that the majority of PFC neurons have mixed selec-

tivity: i.e., their responses are linearly or nonlinearly corre-

lated with diverse combinations of the task-relevant

features (such as the sensory stimuli, task rules or motor

responses) rather than being purely selective for individ-

ual features (Fig. 3). Mixed selectivity is suggested to

be the key computational property of PFC neurons that

leverages the dimensionality of population-activity space

related to the cognitive task performance (Rigotti et al.,

2013). For example, Fusi and colleagues have recently

demonstrated the advantages of PFC neuronal mixed

selectivity by showing that the degree of dimensionality

of the neural population activity space was correlated with

actual choice behavior (Rigotti et al., 2010, 2013), sug-

gesting that the high dimensionality of PFC population

encoding is causally associated with decision-making

capability.

In addition, some unique properties of PFC neuronal

encoding may be exposed only when the ensemble-

level activity is examined in a high-dimensional space.

Seamans and colleagues experimentally addressed this

by comparing the individual- and population-level

neuronal discriminability of simultaneously recorded

neurons in the anterior cingulate region of the PFC

(ACC), and in the dorsal striatum (DS) (Ma et al., 2014).

The individual neuronal discriminability of differential

action sequences did not differ between the two regions,

whereas the ACC outperformed the DS as an ensemble

in all ensemble-based discriminability measures. This

suggests that coordinated activity of PFC neurons leads

to more information-rich ensembles as compared to the

striatum.

Other studies have used trial-by-trial neural population

trajectories to investigate the dynamic properties of
prefrontal cortex encoding of cognitive flexibility. Neuroscience (2016),
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Fig. 3. Example of a PFC neuron with mixed selectivity for multiple task variables, recorded from a rat performing the extra-dimensional set-shifting

task described in Figs. 1B and 2A. This neuron encoded three different task variables; the task rule (A), the response outcome (B), and the

response direction (C), in overlapping or non-overlapping time bins around the time of the action, according to a multiple linear regression analysis

(unpublished data).
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Fig. 4. A rule-based behavior is accompanied by an increase in

prefrontal gamma oscillations specifically at the time of the action. (A)

An example mPFC local field potential trace recorded from rats

performing the extra-dimensional set-shifting task described in

Figs. 1B and 2A. This example trace represents the enhanced

gamma oscillatory power in the 30- to 60-Hz band, specifically at the

peri-action window. (B and C) The z-score normalized power spectral

densities show that the peri-action gamma oscillations were discrim-

inative of the task rule, as a much more pronounced increase in

gamma power was observed in the side-rule than light-rule trials.
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PFC-neural representations of flexible decision making.

Stokes et al. (2013), for example, analyzed PFC neural

populations in monkeys performing a cue-target matching

task with three possible cue-target pairs, requiring the

choice of a target stimulus given the cue in the presence

of distractors. By tracing population states in the

high-dimensional space constructed by all neurons in

the network, the authors found that the PFC population

was dynamically tuned to represent momentary task

demands – i.e., cue discrimination during the cue period

and behavioral choice during the choice period – in a

task context-dependent manner. This suggests that

complex rule-based choices can be mapped onto high-

dimensional PFC neural states that are tuned to reflect

the current task requirement (Stokes et al., 2013). On a

larger timescale, the PFC rule-learning process has been

depicted as a rapid shift in the neuronal ensemble state,

suggesting that the task-rule shift is represented by a sus-

tained alteration in PFC population activity that occurs

abruptly – an ‘‘a-ha” moment (Durstewitz et al., 2010).

Animal electrophysiological studies: local field
potentials

Synchronization via coherent gamma oscillations (c; 30–
120 Hz) may subserve the formation and communication

of functional ensembles in the PFC and other cortical

brain regions (Fries, 2005, 2015; Sirota et al., 2008;

Cardin et al., 2009; Sohal et al., 2009; Uhlhaas and

Singer, 2010; Buschman et al., 2012). During task-

related processes, neuronal ensembles tend to engage

in rhythmic synchronization that can temporally coordi-

nate neuronal activity by creating a sequence of excita-

tory and inhibitory cycles (Fig. 4). Phase-locking of

relevant ensembles into coherent excitation–inhibition

sequences can facilitate communication between them

while blocking ‘noise’ from incoherent ensembles. This

may provide a mechanism for selecting ensembles that

encode the currently relevant features of the task while

deselecting the irrelevant ensembles.

Consistent with this model, distinctly synchronous

PFC ensembles have been shown to be associated with

different task rules, suggesting that a rule-dependent

emergence of synchronous ensembles may be a neural
Please cite this article in press as: Park J, Moghaddam B. Impact of anxiety on
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substrate of the cognitive flexibility (Buschman et al.,

2012). An additional causal relationship has been sug-

gested between task-relevant gamma oscillations and

cognitive flexibility by Sohal and colleagues (Cho et al.,

2015). The authors found that disruption of baseline and

task-evoked gamma oscillations in a mouse model of defi-

cient development of fast-spiking interneurons (FSINs)

led to cognitive inflexibility. By optogenetically enhancing

the activity of FSINs in these mice, the task-related

gamma oscillations, as well as the rule-shifting behavior,

could be rescued, suggesting a role of FSIN-mediated

PFC gamma oscillations in cognitive flexibility. Collec-

tively, these studies suggest that cognitive inflexibility

may be associated with disruptions in baseline and/or

task-evoked oscillations in the PFC.
prefrontal cortex encoding of cognitive flexibility. Neuroscience (2016),
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Human studies

Human behavioral and neuroimaging studies have

investigated the effects of anxiety on decision-making

in healthy individuals and in patients with clinical

anxiety (for a review, see Hartley and Phelps, 2012).

For example, Bishop et al. have shown that PFC recruit-

ment during the attentional control over the conflict eli-

cited by distractors is reduced in individuals with high

trait anxiety in correlation with impaired cognitive task

performance (Bishop et al., 2004; Bishop, 2009). In addi-

tion, a series of human neuroimaging studies has used

fear conditioning and extinction paradigms to model the

perseverative conditioned fear response, revealing PFC

involvement (Shin et al., 2001; Phelps et al., 2004;

Pitman et al., 2012). In these studies, a neutral condi-

tioned stimulus (CS) is paired with an aversive outcome

during the conditioning session. This is then followed by

an extinction session during which the CS is repeatedly

presented without the aversive outcome. fMRI results

show that successful extinction is correlated with

increased activation of the ventromedial PFC (vmPFC)

but reduced activation of the amygdala (for a review,

see Pitman et al., 2012). This bidirectional modulation

of the vmPFC-amygdala circuitry is impaired in PTSD

patients with perseverative conditioned fear responses

even after extinction (Phelps et al., 2004; Rauch et al.,

2006; Pitman et al., 2012). Related neuroimaging stud-

ies have reported prefrontal dysregulation of subcortical

neural activity in the population genetically vulnerable

to developing anxiety disorders (Hariri et al., 2002,

2003, 2005; Bertolino et al., 2005; Pezawas et al.,

2005; Meyer-Lindenberg et al., 2006).

Collectively, human studies suggest that anxiety

biases information processing during flexible behavior.

This can be manifested in at least two ways. First,

anxiety biases attention to threat-related stimuli. This is

measured as faster response time detecting threat-

related stimuli and as increased distractibility by these

stimuli at the expense of attention to task-relevant

stimuli (Mogg and Bradley, 1998; Bar-Haim et al., 2007;

Cisler and Koster, 2010). Likewise, anxiety results in

heightened distractibility by non-threatening stimuli, as

suggested by poor concentration and reduced multi-

tasking capability in anxious individuals (Mineka et al.,

1998; Eysenck et al., 2007). Second, anxious individuals

favor negative interpretations of neutral or ambiguous

stimuli. When presented with emotionally ambiguous

stimuli, such as facial expressions or face-voice pairings,

anxious individuals disproportionately interpret these

stimuli as possessing negative valence (Richards et al.,

2002; Koizumi et al., 2011). Anxiety also is associated

with increased expectation of negative outcomes in deci-

sion making involving risk or ambiguity in the action–out-

come relationship. On a variety of choice tasks, anxious

individuals show heightened risk aversion and favor safe

alternatives (Raghunathan and Pham, 1999; Anderson

et al., 2012; Hartley and Phelps, 2012; Maner et al.,

2012).
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These anxiety-related behavioral biases most likely

involve PFC-mediated cognitive processing. It is

interesting that there is an association between

disrupted PFC neural activity and anxiety-related

behavioral phenotypes such as impulsivity and risk-

averting in healthy individuals, although the association

needs to be further examined in patients with clinical

anxiety (Knoch et al., 2006; Li et al., 2009; Perugi et al.,

2011; Giorgetta et al., 2012). In addition, studies of blood

oxygenation level-dependent (BOLD) signals during risk-

based decision-making tasks, which may be associated

with increased anxiety, show reduced activity in PFC sub-

regions in contrast to increased activity in subcortical

regions such as the amygdala and the ventral striatum

(Knoch et al., 2006; Fecteau et al., 2007; Clark et al.,

2008; Christopoulos et al., 2009). Along the same lines,

economic decision-making studies also show that BOLD

activity in the dorsolateral PFC is enhanced when the sub-

ject chooses the larger but more delayed reward during

intertemporal choice, whereas an impulsive choice was

associated with decreased BOLD signal (McClure et al.,

2004; Kim and Lee, 2011).

An important area for future research is to elucidate

how emotional and motivational factors interact with

cognitive domains in anxiety. For example, is

perseveration in fear extinction related to cognitive

inflexibility and deficits in task strategy shifting caused

by anxiety? More broadly, how are different anxiety-

related cognitive and affective phenotypes related to

each other? Do they share common prefrontal neural

mechanisms? One way to answer these questions is to

examine large populations with a spectrum of anxiety-

related symptoms in the same behavioral framework,

ideally combined with measures of neural activity. A

recent study implemented such an approach by sorting

out the relationship between psychiatric symptoms and

flexible control of goal-directed behavior. Gillan et al.

(2016) had nearly 2000 participants complete an online

task of goal-directed behavior with questionnaires mea-

suring symptoms of various mental health conditions.

The authors found clustering of symptoms, and uncov-

ered a specific association of the compulsivity cluster with

difficulty in flexible control of goal-directed behavior.

Using a similar approach, future studies may further unra-

vel clustering of anxiety phenotypes in correlation with

characteristic cognitive behavioral symptoms and pat-

terns of PFC neural activity changes.

Animal studies: current state of the field

Numerous studies have focused on PFC individual

neuronal representations of fear and anxiety (Morgan and

LeDoux, 1995; Baeg et al., 2001; Milad and Quirk, 2002;

Davis, 2006; Quirk and Beer, 2006; Burgos-Robles et al.,

2009). Findings from these studies have been corrobo-

rated by recent research that has further dissected the

functional neuroanatomy of fear using state-of-the-art

techniques of circuit manipulation, such as optogenetics

(for a review, see Calhoon and Tye, 2015). These studies

have confirmed that highly interlinked neural structures

comprising the amygdala, the bed nucleus of the stria ter-

minalis, the ventral hippocampus and the mPFC represent
prefrontal cortex encoding of cognitive flexibility. Neuroscience (2016),

http://dx.doi.org/10.1016/j.neuroscience.2016.06.013


6 J. Park, B. Moghaddam /Neuroscience xxx (2016) xxx–xxx
information about threats, defensive behavior, and con-

structs relevant to anxiety (Herry et al., 2008; Adhikari

et al., 2010; Lesting et al., 2011; Felix-Ortiz et al., 2013;

Kim et al., 2013; Duvarci and Pare, 2014; Likhtik et al.,

2014; Namburi et al., 2015). In PFC, subpopulations of

neurons respond preferentially to a CS associated with

an aversive event, tracking alterations in the CS–US asso-

ciation – e.g., extinction (Baeget al., 2001;Milad andQuirk,

2002; Burgos-Robles et al., 2009; Courtin et al., 2014).

Moreover, the PFC interacts with other regions such as

the amygdala and the ventral and dorsal hippocampus

via pair-wise neuronal correlations and synchrony – partic-

ularly theta oscillations – to regulate conditioned fear

responses and explorative behavior in anxiogenic environ-

ments such as the open field test and the elevated plus

maze test (Adhikari et al., 2010; Lesting et al., 2011;

Livneh and Paz, 2012; Kumar et al., 2014; Likhtik et al.,

2014; Karalis et al., 2016).

While these studies have provided key information

about how the PFC represents fear or anxiety per se,
little is known about how anxiety affects ongoing PFC

processing of cognition. This includes a near-total lack

of neurophysiological studies that have investigated the

impact of anxiety on PFC neural correlates of cognitive

flexibility. To this end, an important prerequisite for

these studies is an appropriate experimental model of

anxiety that mimics the physiological and behavioral

phenotypes of anxiety while allowing animals to perform

cognitive tasks. Fear-conditioning paradigms are limited

in two ways for this purpose: first, animals’ fearful

responses (freezing and/or avoidance) disrupt task

performance. Second, a fearful state elicited by an

imminent and concrete threat might be dissimilar to an

anxious state, which is a temporally diffuse state often

not associated with a specific event, and which may

even be internally generated (Sylvers et al., 2011).

Behavioral tests of anxiety based on explorative behavior

– e.g., the open-field test and the elevated plus maze test

– also are limited due to the lack of cognitive behavioral

constructs in these assays.
Animal studies: challenges for future research

In order to investigate the impact of anxiety on cognitive

processing, experimental models that produce a

sustained state of anxiety while allowing for cognitive

task performance need to be designed and

implemented. Only by using such models can we

explore anxiety-induced changes in cognitive flexibility at

individual neuronal and neural population levels in the

PFC on multiple timescales. Anxiety is a temporally

diffuse emotional/motivational state and, therefore, it

may be especially critical to assess the longer

timescale, as measured by sustained changes in

background firing rates and/or local field potential (LFP)

oscillations. These types of measures also have

translational value because they are relevant to human

imaging (fMRI, Magnetoencephalography (MEG) and

positron emission tomography (PET)) data.

To this end, genetic mouse lines with anxiety-like

behavioral phenotypes can be used to study anxiety-
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related alterations in PFC neuronal encoding of

cognitive constructs (Shen et al., 2010; Soumier and

Sibille, 2014; Lin and Sibille, 2015). Furthermore, the

recent development of pharmacogenetic techniques such

as DREADD provides conditional and cell-type-specific

loss of function related to anxiety (Soumier and Sibille,

2014). This may allow future studies to test for specific

associations between anxiety-related cognitive deficits

and neuronal activity changes. Another practical

approach is to use anxiogenic compounds to produce a

sustained state of anxiety during task performance. An

example is the drug FG-7142, an inverse agonist of allos-

teric benzodiazepine binding sites in GABAA receptors,

which produces anxiety in humans (Dorow, 1987) and

laboratory animals (Pellow and File, 1986; Cole et al.,

1995; Evans and Lowry, 2007), with cognitive deficits

reported in rats and monkeys (Murphy et al., 1996a,b).

In addition to behavioral indices of anxiety, it produces

biochemical and neurochemical responses such as gluco-

corticoid release (Pellow and File, 1985) and increased

release of dopamine (Moghaddam et al., 1990;

Bradberry et al., 1991; Murphy et al., 1996a) and other

catecholamines (Dazzi et al., 2002; Evans et al., 2006)

specifically in the PFC. We have recently used this model

to study the impact of anxiety on the PFC neuronal corre-

lates of cognitive flexibility (Park et al., 2016). We found

anxiety-related alterations in set-shifting task perfor-

mance in association with deficits in the prefrontal neu-

ronal representation of the task rule. We also observed

suppression of spontaneously active PFC neurons (Park

et al., 2016). This sustained response is consistent with

stress-changing firing rates of subpopulations of PFC

neurons for 30–120 min after the stress exposure

(Jackson and Moghaddam, 2006). The persistent change

in PFC neural activity may also be correlated with stress-

and anxiety-related neurochemical changes in PFC dopa-

mine and norepinephrine release (Bradberry et al., 1991;

Finlay et al., 1995; Butts et al., 2011; Arnsten, 2015). The

relevance of PFC dopamine activation in anxiety was

recently confirmed in studies using cell-type and

projection-specific methods (Lammel et al., 2012;

Gunaydin et al., 2014). Taken together, these findings

so far suggest that anxiety engenders an aberrant state

of spontaneous PFC neuronal activity on an extended

timescale. A key question for future studies is how these

anxiety-induced changes in background PFC neuronal

activity influence PFC encoding of task-relevant events

that contribute to inflexible behavior.

Future studies addressing the impact of anxiety on

PFC neural encoding of cognitive flexibility may need to

consider the wide-spread mixed selectivity in PFC

neurons. Similar to ‘‘normal” conditions (Rigotti et al.,

2013), we posit that, during anxiety, the contribution of

PFC ensembles to cognitive processing can be better

understood by considering the neural population activity

in a high-dimensional space on a trial-by-trial basis. This

approach is especially useful for analysis of neural data

during cognitive flexibility tasks because these experi-

ments involve trial-to-trial changes in task variables. For

example, these analyses can allow statistical compar-

isons of how the population neural states or trajectories
prefrontal cortex encoding of cognitive flexibility. Neuroscience (2016),
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Fig. 5. Illustrations of trial-by-trial neural population activity represented in a reduced high dimensional space (hypothetical data), and research

questions that can be more effectively investigated using this approach. (A) Trial-by-trial population neural trajectories can be extracted by

dimensionality reduction methods. This approach enables visualization and comparisons across trial-to-trial neural trajectories, differentiated by

numerous possible combinations of multiple task covariates of a complex cognitive task. For instance, a trajectory from one task rule (green) can be

differentiated from that of another rule (red) in a cognitive decision-making task. Each line depicts a time-evolving neural population trajectory, and

each dot represents the population state at the beginning and end of each trial. (B) Anxiety may induce sustained changes in ongoing PFC

population activity (depicted with a gray arrow) that may lead to behavioral changes without affecting trial-by-trial neural trajectories during task

events. (C) Alternatively, anxiety may also implicate changes in trial-by-trial neural trajectories (depicted with small gray arrows) in association with

behavioral deficits, on top of the sustained change in the baseline population activity (depicted with a large gray arrow). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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differ between trials of any task covariate combinations –

e.g., correct trials under different rules, or correct vs.

incorrect trials under the same rule.

Recent advances in dimensionality reduction methods

(Cunningham and Yu, 2014) provide a useful tool to find

the shared latent structure of neural population activity.

Based on the shared covariance structure, the reduced

high-dimensional space can be defined to extract trial-

by-trial neural population trajectories. A growing number

of studies on the neural basis of decision-making have

used a dimensionality reduction approach for neural pop-

ulation analysis (Briggman et al., 2005; Durstewitz et al.,

2010; Harvey et al., 2012; Mante et al., 2013; Stokes

et al., 2013). Future studies can use these analyses to

answer important questions about the impact of anxiety

on cognitive flexibility (Fig. 5). These include: (1) How

does anxiety shift PFC neural population activity states?

(2) How does anxiety affect the individual neuronal mixed

selectivity and the high dimensionality that is characteris-

tic of the prefrontal neural population? (3) How are the

trial-to-trial population trajectories during different task

events altered by anxiety? And finally (4) How are these

anxiety-related changes in PFC neural population activity

associated with behavioral changes during tasks that

involve cognitive flexibility?
CONCLUDING REMARKS

A debilitating aspect of anxiety is its impact on cognitive

flexibility and decision making. The nature of these

disrupted cognitive processes is consistent with aberrant

PFC functioning during anxiety. Extensive research has

so far advanced our understanding of how PFC neurons

represent fear and potential future threats, and how they

interact with upstream and downstream neural

structures to generate fear- and anxiety-related

responses. But the impact of anxiety on PFC

ensembles, in correlation with cognitive deficits, is

largely unknown. Newer experimental and analytical
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approaches suggested here may lead to a better

understanding of how anxiety disrupts flexible cognitive

control of behavior.
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